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It is tempting to accept the predictions regarding indentation depth and radius of circle of
contact between two elastic bodies in contact given by the well-known Hertz equations at
face value. However, it is nevertheless of interest to examine these predictions either by
experiment or by independent computation. Indentation depth may be readily compared
using standard experimental apparatus but in this paper, attention is given to the radius of
curvature of the indented surface for a condition of full load. The conclusion arising from
the Hertz equations, that contact between a flat surface and a non-rigid indenter of radius R
is equivalent to that between the flat surface and a perfectly rigid indenter of a larger
radius, has not thus far been examined in detail in the literature, possibly because of the
difficulty in measuring such a radius of curvature in situ while load is applied to the
indenter. This feature of contact between two solids is of interest since it has been often
used as the basis for various hardness theories which involve an elastic–plastic contact.
This paper addresses the issue by utilizing the finite-element method to compute the radius
of curvature of the contact surface for both elastic and elastic–plastic contacts. It is shown
that indentations involving elastic–plastic deformations within either or both the specimen
and the indenter are equivalent to indentations with a perfectly rigid spherical indenter
whose radius is somewhat smaller than that calculated using the Hertz equations for elastic
contact. An experimental compliance response is used to indirectly validate the
finite-element results. C© 1999 Kluwer Academic Publishers

1. Introduction
The stresses and deflections arising from the contact
between two elastic solids has practical application in
hardness testing, wear and impact damage of engineer-
ing ceramics, the design of dental prostheses, gear teeth
and ball and roller bearings. The contact between a
rigid “indenter” and a flat, extensive “specimen” is of
particular interest. The shape of the indenter may be
spherical, conical, a cylindrical flat punch, or even take
the form of a uniformly applied pressure. All such phe-
nomena are usually referred to as “Hertzian contact”.
The most well-known scenario is the contact between a
rigid sphere and a flat surface where Hertz [1, 2] found
that the radius of the circle of contacta, is related to the
indenter loadP, the indenter radiusR, and the elastic
properties of the materials by

a3 = 4

3

kPR

E
(1a)

wherek is an elastic mismatch factor given by:

k = 9

16

[
(1− ν2)+ E

E′
(1− ν ′2)

]
(1b)

In Equation 1b,E,ν andE′,ν ′ are the Young’s modulus
and Poisson’s ratio for the specimen and the indenter,
respectively.

Hertz also found that the maximum tensile stress in
the specimen occurs at the edge of the contact circle at
the surface and is given by

σmax= (1− 2ν)
P

2πa2
(2)

This stress, acting in a radial direction on the surface
outside the indenter, decreases as the inverse square
of the distance away from the center of contact and
is usually considered responsible for the production of
Hertzian cone cracks. Combining Equations 1 and 2,
the maximum tensile stress outside the indenter can be
expressed in terms of the indenter radiusR

σmax=
(

(1− 2ν)P

2π

)(
3E

4k

)2/3

P1/3R−2/3 (3)

The mean contact pressure,pm, is given by the inden-
ter load divided by the contact area, and is a useful
normalising parameter which has the additional virtue
of having actual physical significance.

pm = P

πa2
(4)

It can be shown from Equation 1 that the contact area
is proportional toP2/3 and thereforepm is proportional
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to P1/3. Substituting Equation 4 into Equation 1
gives

pm =
(

3E

4πk

)
a

R
(5)

The mean contact pressure may be referred to as the
“indentation stress” and the quantitya/R the “inden-
tation strain”. Although this definition of “indentation
strain” may be questioned, it is appropriate since the
elastic strains within the specimen scale with this ra-
tio. For example, without some external reference, it is
not possible to tell the difference between indentations
made with indenters of different radii if the quantity
a/R is the same in each. The functional relationship
betweenpm anda/R indicates the existence of a stress–
strain response similar in nature to that more commonly
obtained from conventional uniaxial tension and com-
pression tests. In both cases, a fully elastic condition
yields a linear response. However, due to the localized
or confined nature of the indentation stress field, an in-
dentation stress–strain relationship yields valuable in-
formation about the elastic–plastic properties of the test
material which is not generally available from uniaxial
tension and compression tests [3].

2. Contact between elastic solids
2.1. Hertz equations
In the following sections, Hertz’s original analysis is
reviewed for the purposes of gaining an understanding
of the process of indentation and the nature of the con-
tact between elastic solids. Particular attention is given
to contact involving a spherical indenter. A fully elastic
response is assumed first, and later it is shown how the
nature of the contact varies when the specimen responds
in an elastic–plastic manner.

Following Hertz, the following assumptions serve to
facilitate the analysis:

1. The radii of curvature of the contacting bodies are
large compared with the radius of the circle of contact.
With this assumption, each surface may be treated as
an elastic half-space where equations for the stresses
and displacements can be found in the literature [4].

2. The dimensions of each body are large compared
with the radius of the circle of contact. This allows
indentation stresses and strains to be considered inde-
pendently of those arising from the geometry, method
of attachment, and boundaries of each contacting
solid.

3. The contacting bodies are in frictionless contact.
That is, only a normal pressure is transmitted between
the indenter and the specimen. The pressure distribution
is given by

σz

pm
= −3

2

(
1− r 2

a2

)1/2

(6)

Consider now the contact of a sphere of radiusR′ with
elastic modulusE′ and Poisson’s ratioν ′ in contact with

the flat surface of a specimen whose elastic constants
areE andν as shown in Fig. 1a. With no load applied,
and with the indenter on the point of making contact
with the specimen, the distance from a point on the
periphery of the indenter and the specimen surface is
given by

h = r 2

2R
(7)

whereR is the relative curvature of the indenter and the
specimen given by

1

R
= 1

R′
+ 1

RS
(8)

In Fig. 1a, the load is applied to the indenter in contact
with a flat surface (RS in Equation 8= ∞) such that
the point at which load is applied moves a vertical dis-
tanceδ. This distance is often called the “load-point
displacement”, and when measured with respect to
a distant point in the specimen may be considered the
distance of mutual approach between the indenter and
the specimen. In general, both the indenter and speci-
men surface undergo deformation. These deformations
are shown byu′z anduz at some arbitrary point inside
the contact circle for both the indenter and the specimen
respectively in the figure. Inspection of Fig. 1a shows
that the load-point displacement is given by

δ = u′z+ uz+ h (9)

Other combinations of specimen and indenter types are
shown in Fig. 1b to d. If the indenter is perfectly rigid,
then u′z = 0 (Fig. 1d). For both rigid and non-rigid
indenters,h = 0 at r = 0 and thus the load-point
displacement is given byδ = u′z+ uz. Note thatu′z, uz

andh are all functions ofr , although the functionuz(r )
has yet to be specified precisely.

Hertz showed that a distribution of pressure of the
form given by that for a sphere, Equation 6, results in
displacements of the specimen surface, forr ≤ a, as
given by [5]

uz = 1− ν2

E

3

2
pm
π

4a
(2a2− r 2) r ≤ a (10a)

and outside the contact circler > a [5]

uz = 1− ν2

E

3

2
pm

1

2a

[
(2a2− r 2) sin−1 a

r

+ r 2a

r

(
1− a2

r 2

)1/2
]

(10b)

After deformation, the contact surface lies in between
the two original surfaces and is also part of a sphere
whose radius depends on the relative radii of curvature
of the two opposing surfaces and elastic properties of
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(a) (b)

(c) (d)

Figure 1 Schematic of contact between two elastic solids. (a) non-rigid spherical indenter and non-rigid flat specimen, (b) two identical non-rigid
spheres, (c) non-rigid spherical indenter and flat rigid specimen and (d) rigid spherical indenter and flat non-rigid specimen.

the two contacting materials. For the special case of
contact between a spherical indenter and a flat surface
where the two materials have the same elastic proper-
ties, the radius of curvature of the contact surface is
twice that of the radius of the indenter. The Hertz pres-
sure distribution acts equally on both the surface of the
specimen and the indenter, and the deflections of points
on the surface of each are thus given by Equation 10.
The Hertz analysis approximates the curved surface of
a sphere as a flat surface since the radius of curvature
is assumed to be large in comparison to the area of
contact. Thus, substituting Equation 10 into Equation 9
for bothu′z anduz and making use of Equation 7, for
the general case of a non-rigid indenter and specimen,
yields

u′z+ uz =
(

1− ν ′
E′
+ 1− ν

E

)
π

4a

3

2
pm(2a2− r 2)

(11)

= δ − r 2

2R

whereR is the relative radius of curvature. With a little
rearrangement, and settingr = a in Equation 11, it is

easy to obtain the Hertz equation, Equation 1, and to
show that, atr = 0, the distance of mutual approachδ
between two distant points within the indenter and the
specimen is given by

δ3 =
(

4k

3E

)2 P2

R
(12)

wherek is as given in Equation 1b. Substituting Equa-
tion 1 into Equation 12, gives the distance of mutual
approach, or load-point displacement, for both rigid
and non-rigid indenters as

δ = a2

R
(13)

When the indenter is perfectly rigid,k = 9/16(1− ν2)
and the distance of mutual approachδ is equal to the
penetration depthuz | r = 0 below the original specimen
free surface as given by Equation 10. From Equation 10,
for both rigid and non-rigid indenters, the depth of the
edge of the circle of contact is exactly one half of that
of the total depth of penetration beneath the surface, i.e.
uz | r =a = 0.5uz | r = 0.
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Following Johnson [5], the quantityE∗ = 9E/16k
may be defined such that

1

E∗
= (1− ν2)

E
+ (1− ν ′2)

E′
(14)

where Equation 12 can be written

δ3 =
(

3

4E∗

)2 P2

R
(15)

The quantityE∗ is the effective elastic modulus of the
system and decreases as the indenter becomes less rigid.
Thus, for a particular value of loadP, the distance of
mutual approachδ for a non-rigid indenter is greater
than that for a rigid indenter due to the deformation of
the indenter. For a spherical indenter, the radius of the
circle of contact,a, also increases with decreasing value
of E∗ (or increasing value ofk) as per Equation 1, and
hence, for the same value of loadP, the mean contact
pressure is reduced. Hertz showed that, for contact be-
tween two spheres, the profile of the surface of contact
was also a sphere with a radius of curvature interme-
diate between that of the contacting bodies and more
closely resembling that body with the greatest elastic
modulus. Thus, as shown in Fig. 1a, contact between
a flat surface and a non-rigid indenter of radiusR is
equivalent to that between the flat surface and a per-
fectly rigid indenter of a larger radius,R+, which may
be computed using Equation 1 withk set as for a rigid
indenter. If the contact is viewed in this manner, then the
load-point displacement of an equivalent rigid indenter
is given by Equation 10 withr = 0 and not Equation 15.
Thus, in terms of the radius of the contact circlea and
indenter loadP, the equivalent rigid indenter radius is
given by

R+ = 3a316E

4(1− ν2)9P
(16)

= 4Ea

(1− ν2)3πpm

In Equation 16,E andν refer to materials properties of
the specimen.

For the special case of the contact between two
spheres of equal radii and the same elastic constants, the
equivalent rigid indenter radiusR+ → ∞ and the pro-
file of the contact surface is a straight line (see Fig. 1b).

The Hertzian contact equations serve to provide
information about the actual contact between elastic
solids provided that deviations from the underlying as-
sumptions previously listed are not significant. The first
two assumptions concern the relative geometry of the
contacting bodies, and a judgement may be made con-
cerning the validity of these by inspection. Not so ob-
vious is the effect of friction between the indenter and
the specimen and there is considerable discussion in
the literature regarding this most important issue, for
example, see [6]. However, experiments [7] indicate
that such interfacial friction is not significant for the

case of a spherical indenter but may be significant for
a cylindrical punch indenter.

2.2. Finite-element analysis
Although it is tempting to accept the predictions re-
garding indenter penetration depth, distance of mutual
approach and radius of circle of contact given by the
equations in the previous section at face value, it is
nevertheless of interest to examine them either by ex-
periment or by independent computation. In this paper,
attention is given to the radius of curvature of the in-
dented surface at a condition of full load. The objective
is to test the conclusion that contact between a flat sur-
face and a non-rigid indenter of radiusR is equivalent
to that between the flat surface and a perfectly rigid
indenter of a larger radiusR+. Although there is no
theoretical reason to doubt this result, it may not be ap-
plicable to contact involving an elastic–plastic contact.
The assumption of a spherical contact surface is some-
times used as the basis for hardness theories for elastic–
plastic specimen materials [8] but has not thus far been
examined in detail in the literature, possibly because of
the difficulty of measuring such a radius of curvature
in situ while a load is applied to the indenter. For this
reason, we have purposely not taken a direct experi-
mental approach to the problem but address the issue
via a numerical finite-element method to compute the
profile of the contact surface. This numerical method
of analysis had the further advantage of allowing for
plastic deformation of either, or both, the specimen and
the indenter in a controlled manner. Indirect verification
is provided by an experimental compliance curve for a
model material which exhibits clearly defined elastic
and elastic–plastic contact behavior.

In the present work, the finite-element method was
used to calculate the radius of circle of contacta, in-
dentation depthuz, distance of mutual approachδ, and
effective radiusR+ for the case of a spherical inden-
ter in contact with a flat plane specimen. Results were
computed for different material characteristics corre-
sponding to elastic and elastic–plastic contact with both
relatively hard and soft indenters. Table I shows the ma-
terial properties selected for analysis. The choice of ma-
terial properties for the glass–ceramic material shown
in Table I corresponds to those of a glass–ceramic mate-
rial which, in its fired state, displays an elastic–plastic
characteristic in the indentation stress field [9]. In its
unfired state, the glass–ceramic has a typically brittle
characteristic and the elastic modulus is comparable to
that of ordinary soda–lime glass. The material proper-
ties are representative of a machinable glass–ceramic
available under the trade-name “Macor” (Corning Inc.,

TABLE I Material properties for theoretical and finite-element
analysis

WC Glass–ceramic

E (GPa) 614 64
ν 0.22 0.26
Y (MPa) — 770
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TABLE I I Comparison between finite-element (FE) and theoretical
results for elastic contact for WC indenter and glass-ceramic specimen
with P= 1000 N andR= 3.18 mm

a (mm) uz (mm) δ (mm) R+ (mm)

Hertz 0.3375 −0.0325 0.0358 3.518
FE 0.3359 −0.0323 0.0359 3.516±1.0× 10−5

1 (%) −0.5 −0.8 +0.3 −0.1

TABLE I I I Comparison between finite-element (FE) and theoretical
results for elastic contact for glass–ceramic indenterandspecimen with
P= 1000 N andR= 3.18 mm

a (mm) uz (mm) δ (mm) R+ (mm)

Hertz 0.4441 −0.0264 0.0532 6.360
FE 0.4141 −0.0265 0.0517 6.355± 6.9× 10−6

1 (%) +0.7 +0.3 −2.8 −0.1

Corning, New York). The material properties shown in
Table I for tungsten carbide (WC) correspond to those
used for a rigid indenter in the experimental work to be
presented in later sections.

Comparison of the various computed quantities for
purely elastic contact are given in Tables II and III,
where it can be seen that there is very good agreement
with results of the Hertzian elastic equations in each
case.

Values forR+, the equivalent spherical indenter ra-
dius for the finite-element solutions were computed us-
ing a numerical fit to the individual node displacement
results of finite-element data points. The uncertainty in
this quantity is a measure of the closeness of the data
to a circular arc of radiusR+. Although such a fit may
be entirely appropriate for elastic contact, this is not
necessarily so when plasticity is accounted for in the
contact deformation, as will be seen in Section 3 below.

The profile of the specimen surface for each of the
loading scenarios described above is plotted in Fig. 2.
It is immediately evident that the predictions of the
Hertzian analysis are indeed supported by the elastic
finite-element results. The seemingly large discrepancy
in the distances of mutual approachδ for the case of
identical elastic properties for the indenter and speci-
men can be attributed to the finite-element result taking
as its reference the center of the indenter, whereas the
theoretical result refers to a distant point. Thus,δ for
the theoretical result includes additional deflections in
the “top half” of the indenter not accounted for in the
finite-element model.

2.3. Experimental procedure and results
Direct measurements of the profile of the contact sur-
face at a condition of full load are not possible due to the
inaccessibility of the surface to measuring instruments.
However, indirect means may be employed to validate
the results of the previous section. One such means
is a comparison between experimental and numerical
indentation stress–strain responses. Such comparisons
have been reported previously in the literature [9] for the
purpose of investigating the shape of the plastic zone in

(a)

(b)

Figure 2 Displacements of the specimen surface in the vertical, orz
axis, direction in the vicinity of the indenter at full load (P= 1000 N,
R= 3.18 mm) for fully elastic material response. Solid line indicates
theoretical result from Equations 10a and 10b; data points indicate finite-
element results. (a) WC indenter, unfired glass–ceramic elastic specimen,
and (b) unfired glass–ceramic elastic indenter and specimen.

elastic–plastic specimen materials subjected to contact
loading. In the present work, we focus on a second, and
perhaps more direct, method of comparison where the
compliance, or depth of penetration, is measured and
compared with the numerical and theoretical results.

A polished specimen of unfired glass ceramic ma-
terial was mounted on the horizontal platen of a uni-
versal testing machine. The load was applied through
a tungsten carbide (WC) spherical indenter of radius
R = 3.18 mm by causing the crosshead of the test-
ing machine to move downwards at a constant rate of
displacement with time. A clip gauge was attached so
as to measure the load-point displacement, as shown
in Fig. 3. The output from the clip gauge was inter-
faced to a computer system which read displacement
at regular time intervals during the application of load.
Experimental results were compared to those computed
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Figure 3 Schematic of experimental apparatus used for determining
compliance characteristics of specimen materials. Specimen surface pol-
ished to 1µm and placed on horizontal platen. Clip gauge is mounted
between two knife edges, one touching the surface of the specimen,
the other rigidly attached to the crosshead post. LoadP applied to the
indenter via crosshead on universal testing machine.

Figure 4 Compliance curves for elastic response showing (solid line)
Hertz elastic response, (+) finite element and (◦) experimental results
for WC elastic indenter and unfired glass–ceramic elastic specimen.

using Equation 12 and those obtained using the finite-
element method described in Section 2.2. Fig. 4 shows
that there is good agreement between the load versus
displacement characteristics obtained by each of the
three methods.

3. Contact between elastic–plastic solids
3.1. Analysis
In the preceding sections, the Hertzian elastic con-
tact equations were reviewed and verified using finite-
element analysis. However, despite there being consid-
erable discussion in the literature, there appears to be
little agreement between the essential features concern-
ing the nature of elastic–plastic contact. The character-

istics of elastic–plastic contact appears to be almost cer-
tainly dependent upon the ratio of the yield stress to the
elastic modulus of the specimen material. This depen-
dence was studied in an earlier publication [9] where it
was found that for materials with a high value ofE/Y,
such as a ductile metal, the shape of the plastic zone
appeared to be hemispherical and in agreement with
the so-called “expanding cavity model” of Johnson [5].
For a material with a low value ofE/Y, such as the
glass–ceramic considered here, the shape of the plastic
zone was fully contained within the contact radius at
the specimen surface and appeared to be similar to that
reported by the elastic–constraint model of Shaw and
De Salvo [10]. A consistent theoretical model for in-
dentation contact which embraces the range of material
properties usually encountered in engineering materials
has yet to be formulated. Such a theoretical treatment
may rely on there being an accurate knowledge of the
indentation profile in the fully loaded condition, hence
the motivation for the present work.

3.2. Finite-element analysis
Theoretical analysis of an elastic–plastic indentation
with a spherical indenter is difficult because of the
uncertainty regarding the shape of the evolving plas-
tic zone. However, the problem is suitable for analysis
using the finite-element method where no assumption
about the shape of the zone need be made beforehand.
In the present work, plastic or non-linear specimen be-
havior was included by specifying an elastic–perfectly–
plastic uniaxial stress–strain relationship as part of the
property set for the elements representing the specimen.
It is assumed that such a relationship is representative
of that of the actual specimen material. A special fea-
ture of the present analysis is that, by the use of special
gap elements, the expanding area of contact is accom-
modated automatically and no knowledge of the radius
of the contact circle is requireda priori. Elastic–plastic
behavior is modeled here by treating the specimen ma-
terial as a non-linear elastic solid. Hence, only the ap-
plication of load may be considered, but since the ra-
dius of curvature of the indented surface at full load is
of primary concern, it is not necessary to consider the
unloading portion of the contact event.

The finite-element analysis presented here initially
assumes a perfectly elastic, relatively hard, spherical
indenter in frictionless contact with the flat surface of
an elastic–plastic specimen. Full details of the finite-
element procedure are to be reported elsewhere [11]
and need not be repeated here. Elastic–plastic behavior
was accommodated by an iterative procedure involv-
ing a secant method of adjustment to the local stiffness
of plate elements in which plasticity, according to the
Tresca criterion, was satisfied within a specified toler-
ance level. In the secant method, the elastic modulus is
given by the slope of a straight line drawn between the
origin and the point on the stress–strain curve rather
than the local slope of the stress–strain curve at that
point.

As well as the more usual analysis involving a hard,
spherical indenter and an elastic–plastic specimen, we
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TABLE IV Comparison between finite-element (FE) results for a WC
indenter and an elastic–plastic glass–ceramic specimen and theoretical
results for purely elastic contact withP= 1000 N andR= 3.18 mm

a (mm) uz (mm) δ (mm) R+ (mm)

Hertz 0.3375 −0.0325 0.0358 3.518
Elastic–plastic 0.4766 −0.0464 0.0485 3.257

FE result ±2.2× 10−5

1 (%) +29.2 +50.6 +26.1 −8.0

TABLE V Comparison between finite-element (FE) results for glass–
ceramic elastic–plastic indenterandspecimen and theoretical results for
purely elastic contact withP= 1000 N andR= 3.18 mm

a (mm) uz (mm) δ (mm) R+ (mm)

Hertz 0.4111 −0.0264 0.0532 6.360
Elastic–plastic 0.4922 −0.0311 0.0599 6.142

FE result ±7.6× 10−5

1 (%) +16.5 +28.6 +11.2 −3.6

also consider the case of an indenter having the same
elastic–plastic properties of the indenter. In both cases,
there is noa priori reason to expect that the profile of
the contact surface has a constant value of radius of
curvature when plastic deformation occurs within the
specimen, the indenter, or both. Calculations were per-
formed with elastic constants as specified in Table I (and
as also used in the elastic computations of Section 2.2.)
with the additional inclusion of a yield stress for the in-
denter and specimen material. The yield stress,Y, was
estimated from a consideration of the Vickers hardness
value and the deviation from linearity in an indenta-
tion stress–strain response as previously reported [9].
A comparison between various calculated quantities are
given in Tables IV and V, and the difference between the
profiles of the elastic and elastic–plastic deformations
are shown in Fig. 5.

Again, values forR+ for the finite-element result
were computed using a numerical fitting procedure to
the individual node displacements of the finite-element
results. Although in the case of elastic–plastic contact
there is no reason to assume that the indentation profile
is of a constant radius of curvature, we compute this
quantity, together with the uncertainty, for comparison
purposes with the fully elastic case.

3.3. Experimental procedure and results
Compliance characteristic curves were obtained using
the apparatus described in Section 2.3. Fig. 6 shows
experimental and finite element results. Also shown in
Fig. 6 is the Hertzian elastic response for comparison
purposes. Deviation from the Hertzian elastic condi-
tions is indicative of a plastic event within the specimen
material.

4. Discussion
For the elastic contact, it is of course not surprising that
the penetration depth and radius of circle of contact in
Tables II and III for the WC indenter are greater than

(a)

(b)

Figure 5 Displacements of the specimen surface in the vertical, orz
axis, direction in the vicinity of the indenter at full load (P= 1000 N,
R= 3.18 mm) for elastic–plastic response. Solid line indicates theoreti-
cal result from Equations 10a and 10b, data points indicate finite-element
results. (a) WC elastic indenter, glass–ceramic elastic-plastic specimen,
and (b) glass–ceramic, elastic–plastic indenter and specimen.

those computed for the case of a glass–ceramic indenter,
since the elastic modulus of the former is considerably
larger than that of the latter. Of particular interest is
the radius of curvature of the deformed surfaceR+. In
the case of the WC indenter,R+ is closer in magnitude
to the undeformed indenter radiusR= 3.18 mm com-
pared to the case of the glass–ceramic indenter since
the elastic stiffness of the glass-ceramic is very much
less than that of WC. This is consistent with the orig-
inal analysis of Hertz [1, 2]. Tables II and III show
that there is close agreement between the results of the
finite-element analysis and the theoretical equations.
The compliance curves in Fig. 3 demonstrates a good
agreement between the finite-element results, theory
and experiment.

Of further interest is the profile of the deformed sur-
faces when plastic deformation occurs in the speci-
men material. There is, not surprisingly, a considerable
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Figure 6 Compliance curves showing (solid line) Hertz elastic response,
(+) finite element and (◦) experimental results for a WC elastic indenter
and glass–ceramic elastic–plastic specimen.

increase in the penetration depth since, due to plas-
tic deformation, the same indenter load has now to be
supported by strains elsewhere in the specimen mate-
rial rather than immediately beneath the indenter. The
finite-element results suggest that the indentation sur-
face does have a spherical profile, as indicated by the
very low uncertainty in the fitted value of the effective
radiusR+. Table IV shows that although there is a con-
siderable discrepancy between the effective radiusR+
as calculated using Equation 16, as would be expected
since Equation 16 assumes no plastic deformation, the
results show that the profile of the surface beneath the
indenter is indeed spherical, but with a smaller radius
of curvature than that predicted by Equation 16. Al-
though we might expect an axis-symmetric profile, e.g.
elliptical, there is noa priori reason to expect a spheri-
cal profile. In the absence of any supporting theoretical
treatment, the compliance curves shown in Fig. 6 show
that the finite-element results are supported, indirectly,
by experimental evidence. The differences between the
finite-element and the experimental results, estimated at
about 5%, in Fig. 6 probably arise due to the adoption of
the Tresca criterion for plasticity, an elastic–perfectly–
plastic stress–strain characteristic and the error associ-
ated with the yield stress of the experimental material
in the finite-element analysis.

When plasticity occurs in both specimen and inden-
ter, the shape of the deformed surface cannot be as-
sumeda priori to be spherical, but the results, as in-
dicated by the uncertainty inR+ in Table V, suggest
that it is so. Again, there is a large discrepancy with
R+ as calculated by Equation 16, but this is not sur-
prising considering that Equation 16 applies to purely
elastic contact. These conclusions are further illustrated
in Fig. 7, where the profile for the indentation surface
beneath the indenter, at full load, for elastic contact,
elastic–plastic specimen and elastic-plastic specimen
and indenter are presented together with a profile gen-
erated using the finite-element estimations ofR+.

It will be recalled that the Hertz analysis shows that
indentation with an indenter of radiusR of a given

(a)

(b)

Figure 7 Displacements of the specimen surface in the vertical, orzaxis,
direction in the vicinity of the contact surface at full load (P= 1000 N,
R= 3.18 mm) for elastic–plastic response. Solid line indicates theoreti-
cal result from Equations 10a and 10b, data points indicate finite-element
results as per Fig. 5 and dashed line is the spherical contact surface com-
puted using values ofR+ fitted to finite-element results. (a) WC elas-
tic indenter and glass–ceramic, elastic–plastic specimen, and (b) glass–
ceramic, elastic–plastic indenter and specimen.

elastic modulus is equivalent to indentation with a per-
fectly rigid indenter of larger radiusR+. In the present
work, the validity of this result has been verified by
independent computation. It has also been shown that
indentations involving elastic–plastic deformations are
equivalent to indentations with a perfectly rigid indenter
of radiusR+ whose value is somewhat smaller than that
calculated using the Hertz equations for elastic contact.
Thus, indentation theories which rely on the indented
surface being spherical are vindicated in this regard.
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