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It is tempting to accept the predictions regarding indentation depth and radius of circle of
contact between two elastic bodies in contact given by the well-known Hertz equations at
face value. However, it is nevertheless of interest to examine these predictions either by
experiment or by independent computation. Indentation depth may be readily compared
using standard experimental apparatus but in this paper, attention is given to the radius of
curvature of the indented surface for a condition of full load. The conclusion arising from
the Hertz equations, that contact between a flat surface and a non-rigid indenter of radius R
is equivalent to that between the flat surface and a perfectly rigid indenter of a larger
radius, has not thus far been examined in detail in the literature, possibly because of the
difficulty in measuring such a radius of curvature in situ while load is applied to the
indenter. This feature of contact between two solids is of interest since it has been often
used as the basis for various hardness theories which involve an elastic—plastic contact.
This paper addresses the issue by utilizing the finite-element method to compute the radius
of curvature of the contact surface for both elastic and elastic—plastic contacts. It is shown
that indentations involving elastic—-plastic deformations within either or both the specimen
and the indenter are equivalent to indentations with a perfectly rigid spherical indenter
whose radius is somewhat smaller than that calculated using the Hertz equations for elastic
contact. An experimental compliance response is used to indirectly validate the
finite-element results. © 7999 Kluwer Academic Publishers

1. Introduction Hertz also found that the maximum tensile stress in
The stresses and deflections arising from the contadhe specimen occurs at the edge of the contact circle at
between two elastic solids has practical application irthe surface and is given by

hardness testing, wear and impact damage of engineer-
ing ceramics, the design of dental prostheses, gear teeth
and ball and roller bearings. The contact between a
rigid “indenter” and a flat, extensive “specimen” is of
particular interest. The shape of the indenter may bd his stress, acting in a radial direction on the surface
spherical, conical, a cylindrical flat punch, or even takeoutside the indenter, decreases as the inverse square
the form of a uniformly applied pressure. All such phe- of the distance away from the center of contact and
nomena are usually referred to as “Hertzian contact”is usually considered responsible for the production of
The most well-known scenario is the contact between &lertzian cone cracks. Combining Equations 1 and 2,
rigid sphere and a flat surface where Hertz [1, 2] foundhe maximum tensile stress outside the indenter can be
that the radius of the circle of contaatis related to the ~ expressed in terms of the indenter radRis

indenter loadP, the indenter radiu®, and the elastic

omax = (1 —2v) (2)
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properties of the materials by A—20)P\ (3EN® 15 s
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3 E The mean contact pressum,, is given by the inden-
) o ) _ ter load divided by the contact area, and is a useful
wherek is an elastic mismatch factor given by: normalising parameter which has the additional virtue

of having actual physical significance.
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Pm = (4)
In Equation 1bE, v andE’, v’ are the Young’s modulus
and Poisson’s ratio for the specimen and the indentett can be shown from Equation 1 that the contact area

respectively. is proportional toP?/3 and therefore, is proportional
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to P1/3. Substituting Equation 4 into Equation 1 the flat surface of a specimen whose elastic constants

gives areE andv as shown in Fig. 1a. With no load applied,
and with the indenter on the point of making contact
3E\ a with the specimen, the distance from a point on the
m = (H) R (5)  periphery of the indenter and the specimen surface is
given by
The mean contact pressure may be referred to as the )
“indentation stress” and the quantiy R the “inden- h = ~ (7)
tation strain”. Although this definition of “indentation 2R

strain” may be questioned, it is appropriate since the , ) ,
elastic strains within the specimen scale with this ra—Wher_e'Q'S the relative curvature of the indenter and the
tio. For example, without some external reference, it isSPeCimen given by

not possible to tell the difference between indentations

made with indenters of different radii if the quantity 1 = 1.1 (8)

a/R is the same in each. The functional relationship R R Rs

betweernpm anda/Rindicates the existence of a stress— i i ) i

strain response similar in nature to that more commonliyn Fig- 1a, the load is applied to the indenter in contact
obtained from conventional uniaxial tension and com-With a flat surface Rs in Equation 8= oc) such that
pression tests. In both cases, a fully elastic conditiorin® Point at which load is applied moves a vertical dis-
yields a linear response. However, due to the localizef@nced. This distance is often called the “load-point
or confined nature of the indentation stress field, an indisplacement”, and when measured with respect to
dentation stress—strain relationship yields valuable in@ distant point in the specimen may be considered the
formation about the elastic—plastic properties of the tesfiStance of mutual approach between the indenter and

material which is not generally available from uniaxial the Specimen. In general, both the indenter and speci-
tension and compression tests [3]. men surface undergo deformation. These deformations

are shown by, andu, at some arbitrary point inside
the contact circle for both the indenter and the specimen
respectively in the figure. Inspection of Fig. 1a shows

2. Contact between elastic solids that the load-point displacement is given by
2.1. Hertz equations
In the following sections, Hertz’s original analysis is §=u,4+u,+h (9)

reviewed for the purposes of gaining an understanding

of the process of indentation and the nature of the con- . i )

tact between elastic solids. Particular attention is giverPther combinations of specimen and indenter types are
to contact involving a spherical indenter. A fully elastic ShOW”/ in Fig. 1b to d. If the indenter is perfectly rigid,
response is assumed first, and later it is shown how th&'€nUz = 0 (Fig. 1d). For both rigid and non-rigid
nature of the contactvaries when the specimen respond2dentersh = 0 atr = 0 and thus the load-point

in an elastic—plastic manner. displacement is given by = u’, + u,. Note that., u,
Following Hertz, the following assumptions serve to @ndh are all functions of , although the function(r)
facilitate the analysis: has yet to be specified precisely.

Hertz showed that a distribution of pressure of the
1. The radii of curvature of the contacting bodies areform given by that for a sphere, Equation 6, results in
large compared with the radius of the circle of contactdisplacements of the specimen surface,rfor a, as
With this assumption, each surface may be treated agiven by [5]
an elastic half-space where equations for the stresses
and displacements can be found in the literature [4]. 1-123 g
2. The dimensions of each body are large compared u, = = Pm—(2a% —r?) r<a (10a)
with the radius of the circle of contact. This allows E 274a
indentation stresses and strains to be considered inde-
pendently of those arising from the geometry, methocnd outside the contact cirale> a [5]
of attachment, and boundaries of each contacting
solid.

2
3. The contacting bodies are in frictionless contact. Uy = 1—_v§pmi [(2&12 —r?)sint a
That is, only a normal pressure is transmitted between E 2 72a r
the indenter and the specimen. The pressure distribution 2\ 12
is given by + rz:il(l - ?_2> } (10b)
2\ 1/2
2:_§<1_f_) ©) _ o
Pm 2 a2 After deformation, the contact surface lies in between

the two original surfaces and is also part of a sphere
Consider now the contact of a sphere of radisvith ~ whose radius depends on the relative radii of curvature
elastic modulug’ and Poisson’s ratio’ in contactwith  of the two opposing surfaces and elastic properties of
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Non-rigid indenter z Flat rigid specimen
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28=u,+u',+h

Rigid sphere z
Two identical spheres non-rigid specimen
(© (d)

Figure 1 Schematic of contact between two elastic solids. (a) non-rigid spherical indenter and non-rigid flat specimen, (b) two identical non-rigid
spheres, (c) non-rigid spherical indenter and flat rigid specimen and (d) rigid spherical indenter and flat non-rigid specimen.

the two contacting materials. For the special case oéasy to obtain the Hertz equation, Equation 1, and to
contact between a spherical indenter and a flat surfacghow that, at = 0, the distance of mutual approath
where the two materials have the same elastic propebetween two distant points within the indenter and the
ties, the radius of curvature of the contact surface ispecimen is given by

twice that of the radius of the indenter. The Hertz pres-

sure distribution acts equally on both the surface of the 3 4k \ 2 p2

specimen and the indenter, and the deflections of points = (ﬁ) R 12)

on the surface of each are thus given by Equation 10.

The Hertz analysis approximates the curved surface Qfherek is as given in Equation 1b. Substituting Equa-
a sphere as a flat surface since the radius of curvatukgyn 1 into Equation 12, gives the distance of mutual

is assumed to be large in comparison to the area Ofpproach, or load-point displacement, for both rigid
contact. Thus, substituting Equation 10 into Equation 9q non-rigid indenters as

for bothu, andu, and making use of Equation 7, for
the general case of a non-rigid indenter and specimen, a2
yields b=+ (13)
U, + Uy = (1 —V n 1__”> £§Pm(2612 —r?) When the indenter is perfectly rigié,= 9/16(1— v?)
E’ E /J4a2 and the distance of mutual approatis equal to the
(11)  penetration depthy - o below the original specimen
r2 free surface as given by Equation 10. From Equation 10,
=4~ 2R for both rigid and non-rigid indenters, the depth of the
edge of the circle of contact is exactly one half of that
whereR is the relative radius of curvature. With a little of the total depth of penetration beneath the surface, i.e.
rearrangement, and setting= a in Equation 11, itis  Uz|r =a = 0.5U;r —o.
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Following Johnson [5], the quantitf* = 9E/16k  case of a spherical indenter but may be significant for
may be defined such that a cylindrical punch indenter.

1 (1-v) 1-v?d
E- E | E 14

2.2. Finite-element analysis

Although it is tempting to accept the predictions re-

where Equation 12 can be written garding indenter penetration depth, distance of mutual
approach and radius of circle of contact given by the

3 \2p2 equations in the previous section at face value, it is
83 = ( ) — (15)  nevertheless of interest to examine them either by ex-
4E* ) R periment or by independent computation. In this paper,

attention is given to the radius of curvature of the in-
The quantityE* is the effective elastic modulus of the dented surface at a condition of full load. The objective
system and decreases as the indenter becomes less rigiglto test the conclusion that contact between a flat sur-
Thus, for a particular value of loal, the distance of face and a non-rigid indenter of radigsis equivalent
mutual approacld for a non-rigid indenter is greater to that between the flat surface and a perfectly rigid
than that for a rigid indenter due to the deformation ofindenter of a larger radiug*. Although there is no
the indenter. For a spherical indenter, the radius of théheoretical reason to doubt this result, it may not be ap-
circle of contacta, also increases with decreasing valueplicable to contact involving an elastic—plastic contact.
of E* (or increasing value df) as per Equation 1, and The assumption of a spherical contact surface is some-
hence, for the same value of lo&d the mean contact times used as the basis for hardness theories for elastic—
pressure is reduced. Hertz showed that, for contact beslastic specimen materials [8] but has not thus far been
tween two spheres, the profile of the surface of contacéxamined in detail in the literature, possibly because of
was also a sphere with a radius of curvature intermethe difficulty of measuring such a radius of curvature
diate between that of the contacting bodies and moré situ while a load is applied to the indenter. For this
closely resembling that body with the greatest elasticeason, we have purposely not taken a direct experi-
modulus. Thus, as shown in Fig. 1a, contact betweemental approach to the problem but address the issue
a flat surface and a non-rigid indenter of radiRds  via a numerical finite-element method to compute the
equivalent to that between the flat surface and a peprofile of the contact surface. This numerical method
fectly rigid indenter of a larger radiuR™, which may  of analysis had the further advantage of allowing for
be computed using Equation 1 withset as for arigid  plastic deformation of either, or both, the specimen and
indenter. If the contact is viewed in this manner, then thehe indenter in a controlled manner. Indirect verification
load-point displacement of an equivalent rigid indenteris provided by an experimental compliance curve for a
is given by Equation 10 with = O and not Equation 15. model material which exhibits clearly defined elastic
Thus, in terms of the radius of the contact ciraland  and elastic—plastic contact behavior.
indenter loadP, the equivalent rigid indenter radius is  In the present work, the finite-element method was

given by used to calculate the radius of circle of contacin-
dentation deptl,, distance of mutual approadhand
Rt — 3a°16E effective radiusR™ for the case of a spherical inden-
©4(1-v2)9P ter in contact with a flat plane specimen. Results were
(16) computed for different material characteristics corre-
4Ea sponding to elastic and elastic—plastic contact with both
= m relatively hard and soft indenters. Table | shows the ma-

terial properties selected for analysis. The choice of ma-
terial properties for the glass—ceramic material shown
in Table | corresponds to those of a glass—ceramic mate-
For the special case of the contact between tW(fi"’lI WhiCh.’ ir] it; fired state, di'splays an e'lastic—plas.tic
spheres of equal radii and the same elastic constants,'[I(fga.r"’lcter'snC in the |ndentat|or_1 stress f|elq [9]. In_|ts
equivalent rigid indenter radil®" — oo and the pro- unfired state, the glass—ceramic has a typically brittle

file of the contact surface is a straight line (see Fig. lb)characterlstlc and the elastic modulus is comparable to

The Hertzian contact equations serve to providethat of ordinary soda—lime glass. The material proper-

information about the actual contact between elastiéIes are representative of a machinable glass—ceramic

solids provided that deviations from the underlying as_avanable under the trade-name “Macor” (Corning Inc.,

sumptions previously listed are not significant. The first

two assumptions concern the relative geometry of the

Contacting bodies. and ajudgement may be made CorT_ABLE | Material properties for theoretical and finite-element
cerning the validity of these by inspection. Not so ob-2"3Ys's

In Equation 16 E andv refer to materials properties of
the specimen.

vious is the effect of friction between the indenter and WC Glass—ceramic
the specimen and there is considerable discussion it

the literature regarding this most important issue, for= (GPa) 614 64
example, see [6]. However, experiments [7] indicate;’{ (MPa) _0'22 77%'26

that such interfacial friction is not significant for the
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TABLE Il Comparison between finite-element (FE) and theoretical 0.00

results for elastic contact for WC indenter and glass-ceramic specime
with P =1000N andR=3.18 mm 7 b
a (mm) uz (mm) & (mm) R (mm) -0.01
Hertz 0.3375 —0.0325 0.0358 3.518 — i
FE 0.3359 —0.0323 0.0359 3.5161.0 x 1075 e -0.02
A(%) -05 -0.8 +0.3 -0.1 £ i
N .
N .0.03
TABLE Il Comparison between finite-element (FE) and theoretical -
results for elastic contact for glass—ceramic indeatetspecimen with
P=1000N andR=3.18 mm -0.04
a(mm)  uz(mm) 3§ (mm) R* (mm) _
'0-05 T T T T
Hertz 0.4441 —-0.0264 0.0532 6.360
FE 0.4141 -0.0265  0.0517  855+6.9x 10°° 0.0 0.5 1.0 1.5 2.0
A (%) 407 +0.3 -2.8 -0.1 r (m m)
@
0.00

Corning, New York). The material properties shown in
Table | for tungsten carbide (WC) correspond to those¢ 7
used for a rigid indenter in the experimental work to be -0.01
presented in later sections.

Comparison of the various computed quantities for__
purely elastic contact are given in Tables Il and Ill, & -0.02 j

where it can be seen that there is very good agreeme £

with results of the Hertzian elastic equations in eact -0.03
case. S '
Values forR™, the equivalent spherical indenter ra- §
dius for the finite-element solutions were computed us -0.04
ing a numerical fit to the individual node displacement
results of finite-element data points. The uncertainty ir
this quantity is a measure of the closeness of the dai -0.05 . . T .
toa cir.cular arc of rgdiuﬁi*. Althqugh such a fi.t may 0.0 05 1.0 15 2.0
be entirely appropriate for elastic contact, this is not
necessarily so when plasticity is accounted for in the " (m m)
contact deformation, as will be seen in Section 3 below. (b)
The profile of the specimen surface for each of the_ . . . .
. . . . . . Figure 2 Displacements of the specimen surface in the verticag or
IO":_ldl_ng sceparlos dQSCI‘Ibed above is pI.Ott_ed in Fig. 2axis, direction in the vicinity of the indenter at full loaé & 1000 N,
It is immediately evident that the predictions of the r=3.18 mm) for fully elastic material response. Solid line indicates
Hertzian analysis are indeed supported by the elastitheoretical result from Equations 10a and 10b; data points indicate finite-
finite-element results. The seemingly large discrepancylement res_ults. (aywce inder_1ter, unfirgd glass—ceramicglastic specimen,
in the distances of mutual approaghor the case of and (b) unfired glass—ceramic elastic indenter and specimen.
identical elastic properties for the indenter and speci-
men can be attributed to the finite-element result taking
as its reference the center of the indenter, whereas thslastic—plastic specimen materials subjected to contact
theoretical result refers to a distant point. Théior  loading. In the present work, we focus on a second, and
the theoretical result includes additional deflections inperhaps more direct, method of comparison where the
the “top half” of the indenter not accounted for in the compliance, or depth of penetration, is measured and
finite-element model. compared with the numerical and theoretical results.
A polished specimen of unfired glass ceramic ma-
terial was mounted on the horizontal platen of a uni-
2.3. Experimental procedure and results versal testing machine. The load was applied through
Direct measurements of the profile of the contact sura tungsten carbide (WC) spherical indenter of radius
face ata condition of full load are not possible due totheR = 3.18 mm by causing the crosshead of the test-
inaccessibility of the surface to measuring instrumentsing machine to move downwards at a constant rate of
However, indirect means may be employed to validatelisplacement with time. A clip gauge was attached so
the results of the previous section. One such meanas to measure the load-point displacement, as shown
is a comparison between experimental and numericah Fig. 3. The output from the clip gauge was inter-
indentation stress—strain responses. Such comparisofaced to a computer system which read displacement
have beenreported previously in the literature [9] for theat regular time intervals during the application of load.
purpose of investigating the shape of the plastic zone ifExperimental results were compared to those computed
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P istics of elastic—plastic contact appears to be almost cer-
tainly dependent upon the ratio of the yield stress to the
elastic modulus of the specimen material. This depen-
dence was studied in an earlier publication [9] where it

was found that for materials with a high value®f,

such as a ductile metal, the shape of the plastic zone

appeared to be hemispherical and in agreement with

the so-called “expanding cavity model” of Johnson [5].

For a material with a low value oE/Y, such as the

glass—ceramic considered here, the shape of the plastic

Indenter ' zone was fully contained within the contact radius at
. Clip gauge the specimen surface and appeared to be similar to that
Specimen unit reported by the elastic—constraint model of Shaw and
De Salvo [10]. A consistent theoretical model for in-

dentation contact which embraces the range of material

properties usually encountered in engineering materials

— has yet to be formulated. Such a theoretical treatment

/liffgff;‘: may rely on there being an accurate knowledge of the
indentation profile in the fully loaded condition, hence

Figure 3 Schematic of experimental apparatus used for determiningthe motivation for the present work.

compliance characteristics of specimen materials. Specimen surface pol-

ished to Jum and placed on horizontal platen. Clip gauge is mounted
between two knife edges, one touching the surface of the specimen,

the other rigidly attached to the crosshead post. LBaapplied to the 3.2, Finite-element analysis
indenter via crosshead on universal testing machine. Theoretical analysis of an elastic—plastic indentation
with a spherical indenter is difficult because of the

-1000 g uncertainty regarding the shape of the evolving plas-

tic zone. However, the problem is suitable for analysis
using the finite-element method where no assumption
-800 g‘ about the shape of the zone need be made beforehand.

In the present work, plastic or non-linear specimen be-
havior was included by specifying an elastic—perfectly—
-600 ) . o ) ; )

—_ ‘g plastic uniaxial stress—strain relationship as part of the

property setfor the elements representing the specimen.

-400 It is assumed that such a relationship is representative
of that of the actual specimen material. A special fea-
ture of the present analysis is that, by the use of special

-200 gap elements, the expanding area of contact is accom-
| modated automatically and no knowledge of the radius
of the contact circle is requiresdpriori. Elastic—plastic
0 ' l behavior is modeled here by treating the specimen ma-
0.000 -0.025 -0.050  terial as a non-linear elastic solid. Hence, only the ap-

d (mm) plication of load may be considered, but since the ra-
dius of curvature of the indented surface at full load is
of primary concern, it is not necessary to consider the
unloading portion of the contact event.

The finite-element analysis presented here initially
assumes a perfectly elastic, relatively hard, spherical
using Equation 12 and those obtained using the finiteindenter in frictionless contact with the flat surface of
element method described in Section 2.2. Fig. 4 showan elastic—plastic specimen. Full details of the finite-
that there is good agreement between the load versudement procedure are to be reported elsewhere [11]
displacement characteristics obtained by each of thand need not be repeated here. Elastic—plastic behavior
three methods. was accommodated by an iterative procedure involv-

ing a secant method of adjustment to the local stiffness

of plate elements in which plasticity, according to the
3. Contact between elastic—plastic solids Tresca criterion, was satisfied within a specified toler-
3.1. Analysis ance level. In the secant method, the elastic modulus is
In the preceding sections, the Hertzian elastic congiven by the slope of a straight line drawn between the
tact equations were reviewed and verified using finite-origin and the point on the stress—strain curve rather
element analysis. However, despite there being considhan the local slope of the stress—strain curve at that
erable discussion in the literature, there appears to bgoint.
little agreement between the essential features concern- As well as the more usual analysis involving a hard,
ing the nature of elastic—plastic contact. The characterspherical indenter and an elastic—plastic specimen, we

Figure 4 Compliance curves for elastic response showing (solid line)
Hertz elastic responset{ finite element and®) experimental results
for WC elastic indenter and unfired glass—ceramic elastic specimen.
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TABLE IV Comparison between finite-element (FE) results foraWC 0.00
indenter and an elastic—plastic glass—ceramic specimen and theoretic Py
results for purely elastic contact with=1000 N andR = 3.18 mm

-0.01

a (mm) uz (mm) & (mm) R (mm) A
-0.02 e
/ '
-0.03 .
TABLE V Comparison between finite-element (FE) results for glass— L4

ceramic elastic—plastic indent@ndspecimen and theoretical results for -0.04 i
purely elastic contact witl? = 1000 N andR =3.18 mm wf

Hertz 0.3375 —-0.0325 0.0358 3.518
Elastic—plastic 0.4766 —0.0464 0.0485 3.257

FE result +22x 1075
A (%) +292  +50.6 4261  —80

Uz (mm)

a(mm) u; (mm) & (mm) R (mm) -0.05 — T T | |

Hertz 0.4111 —0.0264 0.0532  6.360 0.0 0.5 1.0 1.5 2.0
Elastic—plastic 0.4922 -0.0311 0.0599  6.142 r (m m)

FE result +7.6x 107
A (%) +16.5 +286  +11.2 ~36 @)

0.00

also consider the case of an indenter having the san -0.01
elastic—plastic properties of the indenter. In both case: °
there is noa priori reason to expect that the profile of __ *
the contact surface has a constant value of radius (g -0.02 .
curvature when plastic deformation occurs within the £ 4 ‘/.
specimen, the indenter, or both. Calculations were pel -0.03 o
formed with elastic constants as specified in Table | (an( = R
as also used in the elastic computations of Section 2.2 7
with the additional inclusion of a yield stress for the in- -0.04
denter and specimen material. The yield str¥ssyas
estimated from a consideration of the Vickers hardnes
value and the deviation from linearity in an indenta- -0.05 | . . .
tion stres;—strain response as previously report_ed 9 0.0 0.5 1.0 15 2.0
A comparison between various calculated quantities ar
givenin Tables IV and V, and the difference between the
profiles of the elastic and elastic—plastic deformations (®)
are Shpwn in Fig. 5. . Figure 5 Displacements of the specimen surface in the vertical or
Again, values forR™ for the finite-element result ais, direction in the vicinity of the indenter at full loa@ & 1000 N,
were computed using a numerical fitting procedure torR =3.18 mm) for elastic-plastic response. Solid line indicates theoreti-
the individual node displacements of the finite-elemental result from Equations 10a and 10b, data points indicate finite-element
results. Although in the case of elastic—plastic contacfesu'ts' (aywcC elasti_c indent_er, glas_s—‘ceramic elastic—pl’._slstic specimen,
there is no reason to assume that the indentation profifa'® (?) glass-ceramic, elastic-plastic indenter and specimen.
is of a constant radius of curvature, we compute this

quantity, together with the uncertainty, for comparisong,qse computed for the case of a glass—ceramicindenter,
purposes with the fully elastic case. since the elastic modulus of the former is considerably
larger than that of the latter. Of particular interest is
the radius of curvature of the deformed surfé&e In
3.3. Experimental procedure and results the case of the WC indenteR®;" is closer in magnitude
Compliance characteristic curves were obtained usingy the undeformed indenter radifs= 3.18 mm com-
the apparatus described in Section 2.3. Fig. 6 showgared to the case of the glass—ceramic indenter since
experimental and finite element results. Also shown inhe elastic stiffness of the glass-ceramic is very much
Fig. 6 is the Hertzian elastic response for comparisofless than that of WC. This is consistent with the orig-
purposes. Deviation from the Hertzian elastic condi-inal analysis of Hertz [1, 2]. Tables Il and Ill show
tions is indicative of a plastic event within the specimenthat there is close agreement between the results of the
material. finite-element analysis and the theoretical equations.
The compliance curves in Fig. 3 demonstrates a good
agreement between the finite-element results, theory
4. Discussion and experiment.
For the elastic contact, it is of course not surprising that Of further interest is the profile of the deformed sur-
the penetration depth and radius of circle of contact irfaces when plastic deformation occurs in the speci-
Tables Il and 11l for the WC indenter are greater thanmen material. There is, not surprisingly, a considerable
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Figure 6 Compliance curves showing (solid line) Hertz elastic response, (@)
(+) finite element_andc()) (_experim_ental re_sults fora WC elasticindenter 0.00
and glass—ceramic elastic—plastic specimen.
increase in the penetration depth since, due to plas -0.01 —=
tic deformation, the same indenter load has now to b 4 / ,’
supported by strains elsewhere in the specimen mat.— S
rial rather than immediately beneath the indenter. Th( € -0.02 / id
finite-element results suggest that the indentation suE 7 Pt
face does have a spherical profile, as indicated by th N~ _g o3 ,/ Bd
very low uncertainty in the fitted value of the effective = " .,’
radiusR™. Table IV shows that although there is a con- ) »”
siderable discrepancy between the effective raéitis -0.04 2
as calculated using Equation 16, as would be expecte J ot »~*
since Equation 16 assumes no plastic deformation, th goees
results show that the profile of the surface beneath th -0.05 ‘ ‘ ' ' '
indenter is indeed spherical, but with a smaller radius 0.0 041 02 03 04 05
of curvature than that predicted by Equation 16. Al- r (mm)

though we might expect an axis-symmetric profile, e.qg. 5
elliptical, there is n@ priori reason to expect a spheri- (®)

cal profile. In the absence of any supporting theoreticakigure 7 Displacements of the specimen surface in the verticalagis,

treatment, the compliance curves shown in Fig. 6 showdirection in the vicinity of the contact surface at full loal £ 1000 N,

that the finite-element results are supported, indirectly,R= 3.18 mm) for ela_stic—plastic response. So_lid Iipe ?ndicqtgs theoreti-
by experimental evidence. The differences between th(éal resultfrom Equaﬂons 10a and_lOt_J, data p0|nt's indicate finite-element
- . . results as per Fig. 5 and dashed line is the spherical contact surface com-

finite-elementandthe experlmental results, estimated ?Lted using values dR™ fitted to finite-element results. (a) WC elas-
about 5%, in Fig. 6 probably arise due to the adoption Otic indenter and glass—ceramic, elastic—plastic specimen, and (b) glass—

the Tresca criterion for plasticity, an elastic—perfectly—ceramic, elastic—plastic indenter and specimen.

plastic stress—strain characteristic and the error associ-

gted W!th the yield stress O.f the experimental mate”alelastic modulus is equivalent to indentation with a per-
in the finite-element analysis.

iqid i et
When plasticity occurs in both specimen and inolen_fectly rigid indenter of larger radiuR™. In the present

ter. the shape of the deformed surface cannot be aV\_IOI’k, the validity of this result has been verified by
' APE . ; ?ndependent computation. It has also been shown that
sumeda priori to be spherical, but the results, as in-

dicated by the uncertainty iR+ in Table V, suggest indentations involving elastic—plastic deformations are

that it is so. Aaain. there is a large discrenanc Wi,[hequivalent'[oindentationswithaperfectlyrigidindenter
" - Agam, : 9 epancy of radiusR™ whose value is somewhat smaller than that
R* as calculated by Equation 16, but this is not sur-

rfising considering that Equation 16 apolies to ourel calculated using the Hertz equations for elastic contact.
2Iastigcontact Thgse conglusions are fﬂ?ther iIIuZtratg hus, indentation theories which rely on the indented
: urface being spherical are vindicated in this regard.

in Fig. 7, where the profile for the indentation surface

beneath the indenter, at full load, for elastic contact,

elastic—plastic specimen and elastic-plastic specimen

and indenter are presented together with a profile genpAcknowledgements

erated using the finite-element estimationdRot The author wishes to acknowledge M. V. Swain and
It will be recalled that the Hertz analysis shows thatR. W. Cheary for advice and useful discussions regard-

indentation with an indenter of radiuR of a given ing this work.
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